报告主题:Maximizing the number of cliques in a graph of given degree sequence $\ell^p$-norm
报 告 人:董子超
报告时间:2024年11月15日(周五)上午9:30-10:30
报告地点:腾讯会议 414-151-458
报告摘要:Suppose $1 \le p \le \infty$. For a simple graph $G$ with a vertex-degree sequence $d_1, \dots, d_n$ satisfying $(d_1^p + \dots + d_n^p)^{1/p} \le C$, we prove asymptotically sharp upper bounds on the number of $t$-cliques in $G$. This result bridges the $p = 1$ case, which is equivalent to the notable Kruskal-Katona theorem, and the $p = \infty$ case, known as the Gan-Loh-Sudakov conjecture, and resolved by Chase. In particular, we demonstrate that the extremal construction exhibits a dichotomy between a single clique and multiple cliques at $p_0 = t - 1$.
报告人简介:董子超,韩国基础科学研究院(IBS)博士后,合作导师为刘鸿教授。2023年获得美国卡耐基梅隆大学(CMU)博士学位,师从Boris Bukh教授,主要研究方向为极值组合学,在Siam Journal on Discrete Mathematics, Electronic journal of Combinatorics等杂志发表论文多篇。