报告主题:Minimal position of branching random walks in random environment
报 告 人:张小玥 副教授
报告时间:2024年11月23日(周六)上午9:00-10:00
报告地点:腾讯会议(会议号:802235529)
报告摘要:We consider a branching random walk with a random environment in location, where the particles branch with a fixed law but move as a random walk in random environment. We will give the exact limit value of Mn / n, where Mn denotes the minimal position of the branching random walk at time n. A key step in the proof is to transfer our branching random walks with a random environment in location to branching random walks with a random environment in time, by use of Bramson's “branching processes within a branching process” (1978). For the “critical case” that Mn/n → 0, we give a further estimate to Mn, that is, for almost all environment, Mn/loglogn→C.This talk is primarily based on the works of Zhang, Hou, and Hong (2020) and Zhang, Hong(2024+).
报告人简介:张小玥,首都经济贸易大学统计学院副教授,2019年获“第二十三届京津冀青年概率统计学术会议钟家庆优秀论文奖”。2020年博士毕业于北京师范大学数学科学学院。在Electronic Journal of Probability、Markov Process and Related Fields等期刊发表多篇学术论文,主持国家自然科学基金青年项目一项。