讲 师

当前位置: 网站首页 >> 师资队伍 >> 师资队伍 >> 信息与计算科学系 >> 讲 师 >> 正文

雷敏

硕导博导:

邮箱:leimin@tyut.edu.cn

职称:讲师

研究方向:偏微分方程数值解,计算机图形学,神经网络及其应用

所属部门:信计系


一 基本信息

雷敏,讲师,主讲计算方法,数值分析等课程。研究方向为偏微分方程数值解,计算机图形学,神经网络及其应用等。

联系方式:leimin@tyut.edu.cn

二 个人经历

(1)2017-09至2020-10,香港城市大学,计算数学,博士

(2)2013-09至2017-07,太原理工大学,统计学,硕士

(3)2009-09至2013-07,中北大学,信息与计算科学,学士

三 研究方向、教学课程

偏微分方程(PDE)数值解法在工程、物理、金融等领域至关重要。流体力学(如 CFD)利用无网格SPH法模拟空气动力学和气象预测;有限元法(FEM)广泛应用于结构分析(如桥梁、飞机设计);医疗影像处理中,PDE 解决图像分割和去噪问题;电子工程中,求解麦克斯韦方程计算电磁波传播;金融领域,数值方法求解 Black-Scholes 方程进行期权定价。结合高性能计算(HPC)和机器学习,PDE 数值解正推动更精准高效的科学计算发展

计算机图形学广泛应用于游戏、影视特效、虚拟现实(VR)、增强现实(AR)、医学成像和工业设计。VR/AR 结合 3D 渲染和交互技术用于培训、医疗和建筑可视化;医学成像通过体渲染, 面渲染分析 CT/MRI 数据;工业设计借助 CAD 软件进行产品建模。。

神经网络在当前社会应用广泛,推动人工智能发展。计算机视觉用于自动驾驶、安防监控、医疗诊断(如癌症筛查);自然语言处理助力智能客服、机器翻译、语音识别;金融领域应用于风险评估、算法交易;推荐系统优化电商、短视频内容匹配;生成式 AI(如 ChatGPT、Stable Diffusion)推动内容创作;工业自动化提升智能制造效率。结合大数据和高性能计算,神经网络正深刻变革各行各业,提高生产力并创造新商业模式。

教学课程:计算方法,数值分析等。 计算方法是一本介绍数值分析和计算算法的课程,旨在帮助学生掌握解决实际科学和工程问题中的数值计算方法。书中涵盖了数值代数、插值、求解非线性方程、数值微分与积分等核心内容。通过实际应用案例与算法实现,学生将学会如何选择合适的数值方法,分析其误差来源,并运用计算工具进行有效的数值求解。该教材为学生打下坚实的数值计算基础,适用于计算数学与工程类学科的学习。

四 科研成果、教学成果

l科研项目:主持山西省青年基金一项,中石油川庆钻探院油基/水基钻井液流变性能预测课题一项。

                 多次带领学生获得数学建模山西省一等奖,二等奖等。

 发表论文

1. L.Han, M.Lei*, RuiPing Niu, H. E. Jia. Neural Network-Driven Adaptive Parameter Selection for the Local Method of Fundamental Solutions. Engineering Analysis with Boundary Elements. 2025.

2. X.Y.Liu, G.Z.Shi,.,M.Lei, Y.F.Wu et.al. Segment Any Tissue: One-shot reference guided training-free automatic point prompting for medical image segmentation. Medical Image Analysis,2025.

3. M.Lei, T.Li, H.Meng*. Comparative analysis of the improved boundary knot and fundamental solutions methods for complex multi-connected Helmholtz-type equations. Applied Mathematical Modelling,142(2025),115971.

4. T.Li, M.Lei*, H. E. Jia. Boundary knots method with ghost points for high-order Helmholtz-type PDEs in multiply connected domains. Engineering Analysis with Boundary Elements. 2024

5. L.Liu, M. Lei*, J. H.Yue, S.Q.Li.. Simplified Boundary Knot Method with Ghost Points for High-Order Harmonic-Type PDEs. International Journal of Computational Methods, 2342011,2024.

6. M. Lei, C.Z. Shi, P. H. Wen, J. Sladek, V. Sladek. Mesh free analysis with Galerkin finite block method. International Journal for Numerical Methods in Engineering. 2024.

7. M. Lei, L. Liu, P. H. Wen*. Fast Finite Integration Method with Variational limit for multi-dimensional partial differential equations. Engineering Analysis with Boundary Elements.155:440-451,2023.

8. M. Lei, P.Y. Liu, Y.C. Hon*. Fictitious finite integration method for solving high order partial differential equations. Engineering Analysis with Boundary Elements.152:235-242,2023.

9. Y. Liang, M. Lei*, J.H. Yue, R.P. Niu. A physics-informed recurrent neural network for solving time-dependent partial differential equations. International Journal of Computational Methods.2341003,2023.

10. C.S. Chen, Andreas Karageorghis, M. Lei*. Local mfs matrix decomposition for elliptic bvps in annular domains. Numerical Mathematics: Theory, Methods and Applications.1-28,2023.

11. L. Liu, M. Lei*, Jun Hong Yue, and Rui Ping Niu. Modified boundary knot method for multi-dimensional harmonic-type equations. International Journal of Computational Methods.2023.

12. M. Lei, L. Liu, C.S. Chen, W. Zhao*. The enhanced boundary knot method with fictitious sources for solving Helmholtz-type equations. International Journal of Computer Mathematics.100(7):1500-1511,2023.

13. P.Y. Liu, M. Lei*, J. H. Yue, R. P. Niu. Improved meshless finite integration method for solving time fractional diffusion equations. International Journal of Computational Methods.2023.

14. Zhao W, M. Lei*, Y. C. Hon. An improved finite integration method for nonlocal nonlinear Schrödinger equations. Computers and Mathematics with Applications, 113:24-33,2022.

15. Zheng H*, F. Wang, C.S. Chen, M. Lei, Y. Wang. Improved 3D surface reconstruction via the method of fundamental solutions. Numerical Mathematics: Theory, Method and Applications,13(4):973-985,2020.

16. M. Lei, Chi Ngai Sam, Y.C.Hon*. Generalized finite integration method with volterra operator for multi-dimensional biharmonic equations. Engineering Analysis with Boundary Elements.111:22-31,2020.

17. M. Lei, Li M*, Wen P.H * and C.G. Bailey. Moving boundary analysis in heat conduction with multilayer composites by finite block method. Engineering Analysis with Boundary Elements. 89:36-44,2018.

18. Li M*, M. Lei, C. Shi, Wen P.H* and M.H. Aliabadi. On the validation of Williams' stress function for dynamic fracture mechanics. Key Engineering Materials.665: 257-260,2016.

19. Li M*, M. Lei, Munjiza A, Wen P. H*. Frictional contact analysis of functionally graded materials with lagrange finite block method. International Journal for Numerical Methods in Engineering.103(6):391-412,2015.

20. Li M*, M. Lei, Wen P.H*. Non-linear analysis of FGM composites by finite block method in cylindrical coordinates. Engineering Structures.101:150-162,2015.

五 社会兼职